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Quantitative diffusion measurements using the
open-source software PyFRAP
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Fluorescence Recovery After Photobleaching (FRAP) and inverse FRAP (iFRAP) assays can
be used to assess the mobility of fluorescent molecules. These assays measure diffusion by
monitoring the return of fluorescence in bleached regions (FRAP), or the dissipation of
fluorescence from photoconverted regions (iFRAP). However, current FRAP/iFRAP analysis
methods suffer from simplified assumptions about sample geometry, bleaching/photo-
conversion inhomogeneities, and the underlying reaction-diffusion kinetics. To address these
shortcomings, we developed the software PyFRAP, which fits numerical simulations of
three-dimensional models to FRAP/iFRAP data and accounts for bleaching/photoconversion
inhomogeneities. Using PyFRAP we determined the diffusivities of fluorescent molecules
spanning two orders of magnitude in molecular weight. We measured the tortuous effects
that cell-like obstacles exert on effective diffusivity and show that reaction kinetics can be
accounted for by model selection. These applications demonstrate the utility of PyFRAP,
which can be widely adapted as a new extensible standard for FRAP analysis.
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he diffusion of molecules is important for almost any

process across all scales of biological organisation, from

transcription factors finding their targets on DNA to
signalling molecules spreading through tissues during
development and homoeostasis'~. The biological function of a
molecule is affected by its action range and therefore its mobility;
however, effective diffusion of molecules moving through com-
plex tissues is difficult to measure quantitatively. More than 40
years ago, Poo & Cone* and Liebman & Entine® developed a
method to assess the diffusivities of fluorescent molecules. In
these fluorescence recovery after photobleaching (FRAP) experi-
ments, the fluorescence of molecules in a small region of the
sample is bleached by exposure to a strong laser pulse®. The
dynamics of fluorescence recovery in the bleached region can
then be used to infer the mobility of the fluorescent molecules
(Fig. la). Inverted FRAP (iFRAP) assays have recently been
developed as an extension of FRAP experiments’~!’, which
eliminate the often harsh bleaching conditions used in FRAP
experiments. iFRAP assays utilise photoconvertible molecules
that can be induced to alter their fluorescence excitation/emission
properties after exposure to ‘photoconverting’ light. In iFRAP
experiments, the spread of signal from a small photoconverted
domain into the neighbouring regions of the sample is monitored
over time and thus represents an experimental mirror image of
FRAP (Fig. 1b).

Diffusion coefficients are commonly extracted from FRAP
experiments by fitting analytical solutions computed from
theoretical models to the measured recovery curves'!~!8, and a
few simulation-based analysis methods have been developed!2!.
Although this allows for a rapid assessment of qualitative mobility
differences in identical experimental settings, current approaches
rely on several assumptions that can affect the accuracy of the
analysis. First, most current methods reduce the FRAP analysis to
one-dimensional or two-dimensional simplifications!' 2!, often
assuming that the fluorescent pool is infinitely large!!-141617, or
ignoring more complex geometries of biological samples that
could play important roles in molecule movement (Fig. 1c).
Recent studies have argued that geometry is crucial for dynamic
biological processes**?%, and must be taken into account for
accurate analysis of FRAP data. Indeed, false assumptions about
the FRAP sample geometry can drastically affect diffusion coef-
ficient estimates (Fig. 1d).

Second, the bleaching process in FRAP experiments is often
inaccurately modelled. Bleaching is posited to be homogeneous or
to follow a Gaussian distribution throughout bleached circular or
rectangular regions, while the molecules outside of the bleached
region are assumed to remain unbleached!!"!> 1>-18 However,
molecules diffusing during the bleaching process can create
inhomogeneities both inside and outside of the bleached region;
moreover, a delay between bleaching and the start of the recovery
measurement can lead to further inhomogeneities (Fig. 1c).
Incorrect assumptions about the bleaching process can thus lead
to a severe misestimation of diffusion coefficients!® 24-27
(Fig. 1e).

Third, in vivo FRAP experiments can be strongly influenced by
reaction kinetics such as production or degradation of fluorescent
molecules, which can contribute to the observed recovery curve
(Fig. 1c). However, this is mostly neglected in classical FRAP
analysis models and can lead to erroneous diffusion estimates
(Fig. 1f)11-17,

To address these shortcomings, we developed the versatile
Python-based FRAP analysis software PyFRAP (available at
https://mueller-lab.github.io/PyFRAP). To facilitate data analysis,
PyFRAP is equipped with an intuitive graphical user interface
(GUIL, Fig. 2a), which gives users without a computational
background access to a sophisticated FRAP data analysis work
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flow from image analysis to statistical model comparison methods
(Fig. 2b). PyFRAP applies the first post-bleach image as initial
condition (Fig. 2c¢), and numerically simulates the FRAP
experiment in realistic two-dimensional or three-dimensional
experiment geometries (Fig. 2d, e); the solution from this
simulation is then fitted to the experimental data. Furthermore,
PyFRAP can accurately account for both uniform production and
degradation during FRAP experiments. PyFRAP saves all
analysed data and settings in a logical data structure that can be
shared with collaborators or re-used for later analyses (Fig. 2f).
The software is freely available, and the open-source environment
allows for rapid expansion through collaborative work?® to adjust
analysis methods to the users’ needs.

To demonstrate the utility of PyFRAP, we conducted several
typical in vitro and in vivo FRAP experiments (Supplementary
Fig. 1). PyFRAP accurately determines the diffusion coefficients
of fluorescent molecules ranging from 3 to 500kDa in both
artificial and biological contexts. In contrast to currently available
software, PyFRAP’s flexible initial conditions also allow analysis
of iFRAP experiments, producing results comparable to FRAP.
We used PyFRAP to measure the influence that obstacles such as
cells exert on the movement of diffusing molecules, and found
that such geometric hindrance decreases diffusivity by about one-
third. Moreover, PyFRAP provides accurate modelling of reaction
kinetics, including production and degradation. Finally, to test the
impact of extracellular binding on protein diffusivity, we
measured the diffusion of signalling molecules in living zebrafish
embryos. We found that the effective diffusivity of a signalling
molecule in developing zebrafish was reduced to about one-tenth
of its predicted value, in agreement with hindered diffusion
models postulating interactions of embryonic signals with
diffusion regulators?>?. Altogether, our analyses highlight how
detailed examination of FRAP data can be used to determine the
contribution of individual factors to the movement of molecules
in controlled artificial and biological contexts®.

Results

PyFRAP is a versatile FRAP/iFRAP analysis package. Current
FRAP analysis methods often make simplified assumptions about
FRAP experimental conditions to aid in the derivation of analy-
tical solutions'!1®18, and to facilitate numerical simulations?®Z!.
Such assumptions include reducing complex sample geometries
to lower dimensions, idealising the initial bleaching profile, or
ignoring additional reaction kinetics potentially underlying
fluorescence recovery (Fig. 1c). Unless the experiment is well
approximated by these assumptions (e.g., simple geometry, small
bleach spot compared to a large sample volume, sharp bleach
profile, no reactions), this can lead to erroneous diffusion
estimates (Fig. 1d-f). To address these shortcomings, we
developed PyFRAP. PyFRAP numerically simulates FRAP
experiments in realistic three-dimensional geometries using an
interpolation of the first post-bleach image as initial condition.
This simulation is then fitted to the experimental data,
incorporating reaction kinetics such as uniform production and
degradation.

PyFRAP is an open-source Python-based FRAP analysis
software that runs on the major operating systems Microsoft
Windows, Mac OSX and Linux. Over the past 20 years, Python
has become the standard programming language for scientific
research because of the availability of versatile add-on packages
and its intuitive and simple syntax”". Building on the resourceful-
ness of Python, PyFRAP is based on commonly used packages
such as PyQT, SciPy and FiPy’>~¢, PyFRAP comes with an
intuitive graphical user interface (GUI, Fig. 2a) and a fully
documented application programming interface (API) allowing
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Fig. 1 Fluorescence perturbation techniques used for effective diffusion measurements, and drawbacks of current analysis methods. a In fluorecence

recovery after photobleaching (FRAP) experiments, a small region in the sample is bleached. After bleaching, the diffusion-driven recovery in the bleached
region is monitored. b Inverse FRAP (iFRAP) is an experimental mirror image of FRAP: Molecules in a given region are photoconverted and then spread
throughout the sample, resulting in the loss of fluorescent signal in the region of photoconversion. € Drawbacks of current analysis methods exemplified
with zebrafish development at late blastula stages. Current analysis methods simplify sample geometry, idealise bleaching profiles, or ignore underlying
reaction kinetics. d-f Possible relative error in diffusion coefficient estimates that can occur if false assumptions are made about sample geometry (d),
bleaching conditions (e), or reaction kinetics (f), respectively. The maximum displayed error was capped to a value of 200%, but can be up to 1000%

quick development of scripts or modifications of the PyFRAP
code. PyFRAP’s functionalities include sophisticated image
processing functions useful for FRAP analysis, customisable
geometry and analysis region definitions, a finite element partial
differential equation (PDE) solver that simulates FRAP/iFRAP
experiments with adjustable options, statistical tools for averaging
and model comparison, and multiple plotting and input/output
functions (see Methods section and Supplementary Note 1 for
details). To make the software easily accessible, dialogue boxes
(software wizards) guide the user step-by-step through data
import, image analysis, simulation and fitting.

NATURE COI\/\MUN\CAT\ONS| (2018)9:1582

We programmed PyFRAP to import image data from most
common microscope formats, such as .tif, Ism and .czi. Users can
define arbitrary regions of interests (ROIs) that are then used for
image analysis, simulation and fitting (Supplementary Fig. 2a).
For some experimental setups, the imaged sample might be larger
than the field of view. In these cases, the concentration of
molecules in regions outside of the image can be estimated from
selected areas in the first image of the recovery image series
(Supplementary Fig. 2b). Uneven illumination is a common
artefact in FRAP experiments. PYFRAP can correct this artefact
by normalisation using pre-bleach images or using a correction
matrix computed from a secondary data set generated with a

| DOI: 10.1038/541467-018-03975-6 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03975-6

- PyFRAP
File Edit Embryo DataAnalysis Simulation _Pinning
Object
= TestMol_simulated_0
= newEmbryo_0 1 1 1
Geometry
= ROIs 10

Fitting  Statistics  Settings.
newEmbryo_O/newFit 0 #1 x |

Analyzed| Simulate: Fitted

Fit newFit_0

bleachedROI=None
D=50.0

iterations=1000

Al

All Square
All Out
Slice

Slice rim

0.8

c-coocooo

Rim
Bleached Squ...
Out

Ana\isis

Mesh
= Fits
newrit 0 1

Intensity (AU)
o
o

o
=

Project navigation

0.0

Plot tabs

| prod=0.0

-+~ Bleached Square newfit] Ews.m,mc
— Bleached Square newfit| solver=PCG

stepsSim=1000

tolerance=1e-10

valout=None

vals=]

50 100 150
" Time (s)

200 250 300

quration instance at 0x7f6edff7c248>
Tp.getcurrentEmbryo ()
>> emb.name

*newEmbryo_0"

Python terminal

)

Ll

b c

Data import

Image analysis

Daa

Initial condition for the simulation

f

Molecule
Embryo 1

Geometry

ROl 1

ROI 2

Analysis
Low Y High Low I High
Fluorescence intensity Concentration
Simulation
- Embryo 2
Data fitting

Fig. 2 The PyFRAP software package. a Annotated snapshot of the PyFRAP main GUI with project navigation tree (red), plot tabs (green), object property
display (orange), and integrated Python terminal (blue). b PyFRAP work flow. € PyFRAP's interpolation of the first post-bleach image as initial condition for
FRAP simulations. The length of the white scale bar represents 100 pm. d, e Spatial discretisation of geometries resembling d a frustum and e a zebrafish

embryo at late blastula stages (dome stage). f PyFRAP's data structure
homogeneously distributed fluorophore®”=3° (see Methods
section and Supplementary Fig. 2c for details). To avoid
numerical instabilities, PyFRAP allows the user to smooth or
denoise the image data using a Gaussian or median filter
(see Methods section, Supplementary Note 1, Supplementary
Fig. 3, and Supplementary Table 1 for details).

FRAP and iFRAP experiments have been performed in a
variety of contexts, from the cigar-shaped Drosophila embryo and
the relatively flat Drosophila win% disc to the dome-shaped pre-
gastrula stage zebrafish embryo!0?%2% 40-42 These structures
have distinct geometries that could impact fluorescence recovery.
In fact, we found that simplifying the three-dimensional zebrafish
embryo to a two-dimensional disc can frequently lead up to a
>200% error in estimated diffusion coefficients (Fig. 1d). In
PyFRAP, users can define arbitrary two-dimensional and three-
dimensional ~ geometries  using ~ Gmsh**  or  CAD
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STereoLithography (.stl) files that are then spatially discretised
into tetrahedral meshes by Gmsh in combination with TetGen**.
PyFRAP provides various meshing options, such as local mesh
refinements, boundary layer meshes and attractor meshes,
allowing users to adapt the mesh to experimental details
(see Fig. 2d, e and Supplementary Fig. 4c for example geometries
and meshes).

In current FRAP analysis methods, the initial condition of the
FRAP experiment is often simplified to a simple rectangular
function or a Gaussian profile to ap}l)roximate sharp or blurred
bleach boundaries, respectively!!1> 14718, 45-47 However, light
scattering, imperfect bleaching and diffusion during the bleaching
process can lead to more complex bleaching profiles and thus
need to be considered during FRAP analysis to avoid misestima-
tion of diffusion coefficients>»2>3%48 To overcome this issue,
PyFRAP uses a bilinear interpolation between pixels of the first
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and diffusivity®®
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post-bleach image to estimate the initial condition for mesh cells.
This initial condition closely resembles initial experimental
bleaching profiles and concentration distributions (Fig. 2c).
Moreover, in contrast to most current FRAP analysis meth-
ods!1-184647  PyERAP does not fit a mathematical
expression based on simplified assumptions to the data; instead,
PYFRAP uses FiPy>? to simulate the experiment numerically,
resulting in a solution that incorporates the realistic three-
dimensional geometry and initial conditions. The numerical
simulation is then fitted to the FRAP data by minimising
the sum of squared differences using classical optimisation
adgorithms‘w’51 (see Methods section for details).

In typical FRAP and iFRAP experiments, a protein of interest is
tagged with a fluorescent protein and expressed within a tissue. In
such an experiment, the fusion protein is often actively produced
at the same time that FRAP is carried out; additionally, fusion
proteins undergo degradation over time. Depending on how the
fusion protein is expressed (promoter-driven expression, mRNA
injection, etc.), its degradation kinetics, and the timescale of the
FRAP/iFRAP experiment, production and degradation can
dramatically influence recovery curves. Ignoring reaction kinetics
in FRAP experiments could therefore lead to erroneous diffusion
coefficient estimates. Indeed, recovery curves with pure diffusion
fitted to a simulated reaction-dominant data set often resulted
in a >200% error in the estimated diffusion coefficients (Fig. 1f).
To ensure that the appropriate reaction kinetics are considered
when analysing FRAP data, PyFRAP is equipped with four
models: (1) Pure diffusion, (2) diffusion with production, (3)
diffusion with degradation and (4) diffusion with production and
degradation (see Methods section for details). The model can be
constrained with previous reaction rate measurements from
assays such as fluorescence decay after photoconversion (FDAP)
5253, alternatively, production and degradation rates can be
directly obtained from fitting the FRAP data. Below, we discuss
methods to determine which approaches are most appropriate for
a given data set.

An advantage of PyFRAP is its ability to assess FRAP data
using multiple models of varying complexity, from pure diffusion
to combined reaction-diffusion kinetics. However, determining
which model is appropriate for a given data set can be
challenging. Choosing the incorrect model can lead to overfitting
and potentially false diffusion coefficients®*. The Akaike informa-
tion criterion (AIC) is a statistical tool that can aid in model
selection®. PyFRAP’s implementation of the AIC allows users to
compare the models mentioned above and determines the most
likely model based on a relative weighted measure that includes
both the model’s log-likelihood and its degrees of freedom, i.e.,
the number of model parameters. Moreover, PyFRAP provides
several statistical tests (Supplementary Table 2) to assess
differences between measurements and obtained fits, such as
Student’s t-test® for normally distributed data or the
Mann-Whitney-U-test®”, which does not require normally
distributed data. The Shapiro-Wilk-test can be used to assess
whether the measured diffusivities follow a normal distribution®®
and whether application of Student’s t-test or the
Mann-Whitney-U-test is justified.

PyFRAP’s object-oriented data structure (Fig. 2f) can be saved
into serialised objects and easily loaded for further analysis or
shared with collaborators. In addition, PyFRAP lets users visualise
every aspect of PyFRAP’s analysis work flow and save plots and
images into publication-ready figures.

Benchmarking PyFRAP. To validate PyFRAP, we first deter-
mined whether it can recover true diffusion coefficients and
reaction kinetics from simulated data. We used our previous
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in-house solution?>?*42 based on the commercial programs
MATLAB and COMSOL multiphysics to simulate 24 FRAP
experiments with different reaction kinetics and diffusion coef-
ficients. Using PyFRAP, the simulated data sets were fitted with
all four possible reaction-diffusion models (see above). We
determined a maximal error of 10% (average error: 2%,
Supplementary Table 3) between simulated and estimated
diffusion coefficients, demonstrating that PyFRAP recovers
correct diffusion coefficients within the error tolerance of the
numerical simulations.

Next, we tested whether PyFRAP’s implementation of the AIC
allows identification of the models used to create the simulated
data. When the data were simulated with models describing either
pure diffusion, diffusion and degradation, or diffusion and
production, the AIC predicted the correct underlying model
(Supplementary Table 3). However, the model selection based on
the AIC did not favour the correct model for data sets that
included diffusion combined with both production and degrada-
tion, since models with fewer degrees of freedom provided
smaller Akaike weight values. Simulations involving diffusion,
production and degradation can generate data effectively
indistinguishable from data simulated with only diffusion and
production or diffusion and degradation, explaining why the AIC
cannot predict the correct model in this case.

To assess PyYFRAP’s performance in comparison with other
available software packages based on analytical!”4047>9 or
numerical?®2%0 approaches (Supplementargr Table 4), we used
easyFRAPY, Virtual FRAP?, FrapCalc*®, simFRAP?! and
PyFRAP itself to analyse simulated FRAP experiments (Supple-
mentary Note 2, Fig. 3). We simulated 18 experiments in which
geometry, relative bleach window size, and diffusion coefficients
differed. Simulations were conducted either in a simple circular
two-dimensional domain or a complex three-dimensional zebra-
fish embryo-like geometry (Fig. 2e). FrapCalc and easyFRAP
assume circular bleach windows!>#¢%; to facilitate comparison,
we therefore simulated FRAP experiments with circular bleach
windows. Bleach window sizes comprised 5, 10 or 50% of the slice
diameter, representing different proportions between fluorescent
and bleached pools (Fig. 3b). Simulations were performed with
thrge biologically relevant diffusion coefficients: 10, 50 and 200
pum</s.

Simulation-based programs (PyFRAP, virtualFRAP and sim-
FRAP) generally provided better results than analytical solutions
(easyFRAP and FrapCalc): FrapCalc and easyFRAP were either
unable to determine diffusion coefficients, or provided diffusiv-
ities that were off by at least 20% for most experiments (Fig. 3c).
Fast recovery dynamics were challenging for all tested software.
One reason for this is that fewer data points were recorded during
the actual recovery process of highly diffusive molecules due to a
fixed frame rate of 1 frame/s in the simulated test data sets,
leading to larger errors; moreover, for fast recovery dynamics
errors from interpolating simulations onto images are more
severe. The analytical software packages provided better results
for the two-dimensional compared to three-dimensional geome-
tries, while simulation-based approaches showed no clear trend
regarding geometry. In terms of bleach window radius, the
analytical solutions performed worst if the window diameter was
50% of the slice diameter. This effect might be due to the
assumption of an infinite pool of fluorescent molecules outside of
the bleached region!>—when the bleach window is very large, the
pool of unbleached fluorescent molecules is small, which conflicts
with the assumption of an infinite pool. In contrast, PYFRAP
outperformed all current software packages and exhibited the
smallest error between predicted and simulated diffusion
coefficients (Fig. 3c).
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Applications of PyFRAP to measure diffusion hindrance. In
vivo, it is thought that the overall movement of molecules is
affected by binding interactions and by the presence of obstacles
such as cells, resulting in a reduced effective diffusion coefficient
of secreted proteins that move through tissues?>. However, the
effects of these interactions have not been rigorously tested
experimentally. We therefore employed PyFRAP to examine the
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effects of obstacles and binding partners on the effective diffu-
sivity of dextrans and proteins in experimentally controlled
in vitro geometries and in living zebrafish embryos.

First, we measured diffusion coefficients of a wide range of
differently sized molecules (Supplementary Table 5) in a simple
in vitro context in the absence of binding partners or obstacles.
We performed FRAP experiments with different bleach
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geometries using fluorophore-coupled dextrans ranging from 3 to
500 kDa in molecular weight (Fig. 4a-d, Supplementary Figs. 5
and 6), and compared the results with theoretical predictions and
literature values. Fluorescence recovery in these in vitro experi-
ments should be purely defined by diffusion, and the theoretical
diffusivities D of spherical molecules can be calculated from their
radii v based on the relationship D~ 1/r as postulated by the
Einstein-Stokes equation (Supplementary Note 3). The diffusion
coefficients determined by PyFRAP were in good agreement with
literature values and theoretical predictions (Fig. 5a, Supplemen-
tary Tables 6 and 7).

A variant of FRAP that allows exclusion of reaction kinetics,
such as production, and thus decrease the number of unknown
experimental parameters is iFRAP (Fig. 1b). To perform in vitro
iFRAP experiments, we used the green-to-red photoconvertible
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protein Dendra2®!. Since photoconverting Dendra2 from green to

red can also be interpreted as bleaching the original green
fluorescence,  measuring  unconverted and  converted
protein distributions produces both FRAP and iFRAP experi-
ments at the same time. To test whether PyFRAP correctly
analyses iFRAP data, we used the experimental FRAP and iFRAP
sets independently and assessed whether the obtained diffusion
values are equal (Fig. 4e-h). Using FRAP we measured a Dendra2
diffusivity of 529%52 (standard deviation) pm?%/s, and
using iFRAP we obtained a similar value of 53.3 +3.1 um%/s
(Fig. 5b, average difference between the two diffusivities per data
set: 2.6 + 1.5 um?/s).

Next, we examined the effect of tortuosity on diffusion. In
biological samples, the path length that molecules take increases
as they move around obstacles such as cells. The effect of this
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Fig. 5 Effective diffusion coefficients determined by PyFRAP. a Results of in vitro experiments and PyFRAP analysis for freely diffusing fluorescent dextrans
of different molecular weights. Black markers indicate literature values for fluorescent dextrans, red markers the mean effective diffusion estimates
obtained by in vitro experiments and PyFRAP analysis, and grey markers the theoretical estimates derived from the Einstein-Stokes equation (see
Supplementary Note 3). Red error bars show the standard deviation of PyFRAP's effective diffusion estimates, and black error bars show the standard
deviation of the literature values listed in Supplementary Table 7. The grey line represents a linear regression fit to the theoretical values. b Results of
FRAP/IFRAP experiments for the photoconvertible protein Dendra2. ¢ Results of simulations investigating the influence of tortuosity on effective diffusion
for differently packed bead experiments. Grey and black markers indicate 2D and 3D simulation results, respectively. d Results of fluorescent dextran
experiments demonstrating the impact of tortuosity on effective diffusivities. e Results of GFP experiments to analyse the impact of tortuosity, embryonic
extracelluar environment, protein production, and extracellular binding on effective diffusion estimates. Box plots in b, d, @ show median (orange line),
mean (black horizontal line inside box), 25% quantiles (box), and all included data points (red markers). Whiskers extend to the smallest data point within
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tortuous movement can be described by the diffusion hindrance
factor (also known as diffusion permeability®?) § = 1/A>=D/D,
where A is the tortuosity, D" is the effective diffusion coefficient
(with obstacles), and D is the free diffusion coefficient
(without obstacles). To assess the expected magnitude of
tortuosity on altering effective diffusivity, we first performed
numerical simulations of FRAP experiments with and
without radial obstacles in two- and three-dimensional
geometries. Radial obstacles were either placed regularly,
randomly, or following a nearly-ideal packing scheme, resulting
in an extracellular volume fraction (EVF, i.e., the space available
for molecules to diffuse) ranging from 78% down to 25%
(Supplementary Fig. 7). These simulations demonstrated that
recovery rates are slowed down as the EVF decreases (Fig. 5c,
Supplementary Table 8). If the geometry is two-dimensional, an
EVF of 25% results in an expected reduction in effective
diffusivity of approximately 66%. In three-dimensional simula-
tion experiments, we obtained a reduction of effective diffusion
coefficients by 40% when the EVF was decreased to 38%
(Supplementary Note 3).

To determine whether the presence of obstacles decreases
effective diffusivity as predicted by our simulations, we performed
FRAP assays in vitro with a fluorescein-coupled 70 kDa dextran
(Fig. 4i, j) or recombinant GFP (Supplementary Fig. 8) in the
presence of polyacrylamide beads. Consistent with our predic-
tions, recovery was slower in the presence of beads, and the
effective diffusivity of fluorescein-coupled 70kDa dextran
drogped from 24.1 +0.4 (standard error) pmzls to 14.9+0.5
pum=/s, suggesting an EVF of 39% (0=0.61) (Fig. 5c, d,
Supplementary Tables 8 and 9). Similarly, for recombinant GFP
effective diffusivity dropped by 18% (Fig. 5e, Supplementary
Table 10, Supplementary Fig. 8a-d).

To assess diffusion hindrance in vivo, we injected
recombinant GFP protein into the extracellular space of
living zebrafish embryos. We found that the effective diffusivity
in vivo was 60% lower than for freely diffusing GFP, and 53%
lower than in in vitro experiments with beads (Fig. 5e,
Supplementary Table 10, Supplementary Fig. 8e, f). This suggests
that tortuosity in zebrafish embryos is higher than in the in vitro
bead assay. Importantly, we found similar diffusion coefficients of
36 um?/s in vivo for extracellularly injected recombinant GFP and
secreted GFP constantly produced from injected mRNA, showing
that PyFRAP can properly account for both diffusion and
production (Fig. 5e, Supplementary Table 10, Supplementary
Fig. 8g, h).

Finally, we examined the effects of binding interactions on
effective diffusivity. GFP presumably does not experience
significant binding interactions with extracellular molecules in
zebrafish embryos, although its movement is affected by
obstructions like cells and cellular extensions. In contrast,
secreted signalling molecules are expected to interact with
extracellular molecules such as receptors and extracellular matrix
components??, To assess the effect that interactions with
extracellular molecules might have on secreted signalling
molecules, we injected mRNA encoding the TGFﬁ-su&)erfamﬂy
member Squint fused to GFP into zebrafish embryos®®. Squint-
GFP is approximately 1.5 times larger than GFP and according to
the Einstein-Stokes equation (Supplementary Note 3) would be
predicted to have an approximately 1.14 times smaller diffusion
coefficient than GFP (effective diffusivity D(GFP) = 36 pmz/s,
expected effective diffusivity D(Squint-GFP) = 31 pmz/s). How-
ever, we measured an effective diffusion coefficient of approxi-
mately 2 um?/s for Squint-GFP in living zebrafish embryos, ~90%
lower than the predicted diffusion coefficient (Fig. 5e, Supple-
mentary Table 10, Supplementary Figs. 8i, j and 9). These
findings are consistent with previous measurements?® and with
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the idea that interactions with so far unidentified binding
partners slow down the effective diffusion of embryonic signalling
molecules like Squint-GFP?22°,

Discussion

Although FRAP analyses have long been used to measure relative
differences in mobilities between macromolecules, analysis tools
to accurately and quantitatively determine effective diffusion
coefficients from FRAP data are lacking. Current analysis tools
impose several simplifications including one-dimensional or two-
dimensional reductions of complex three-dimensional geome-
tries, idealised bleaching conditions, and the absence of important
reaction kinetics. When the experimental conditions closely
resemble the simplified assumptions, e.g., small bleach domains
and negligible reaction kinetics, these tools can rapidly provide
reasonable diffusion estimates (Fig. 3c). However, experimental
conditions are often more complex, and the use of simplified
assumptions may yield drastically divergent diffusion coefficients
(Fig. 1d-f). PyFRAP addresses these shortcomings by providing a
simulation-based analysis that incorporates realistic geometries,
bleaching conditions and reaction kinetics.

We found that PyFRAP’s data analysis pipeline is numerically
reliable, recovered the correct diffusion coefficients and reaction
kinetics, and additionally predicted the correct underlying
reaction-diffusion models for simulated test data sets with known
diffusion, production, and degradation parameters. PyFRAP
consistently outperformed all other tested software packages,
demonstrating its strength as a novel FRAP analysis method.
Furthermore, PyFRAP was able to determine diffusion
coefficients comparable to both theoretical and previously
experimentally measured estimates for macromolecules with
molecular weights ranging over two orders of magnitude. Since
PyFRAP can analyse data independently of any assumptions
about the initial conditions, it is suitable to analyse both
FRAP and iFRAP experiments. iFRAP has recently been
developed as an alternative to FRAP due the increasing avail-
ability of photoconvertible proteins and allows ignoring reaction
kinetics such as production. We performed tandem FRAP/iFRAP
experiments to analyse the diffusion of the photoconvertible
protein Dendra2 and found equal diffusion coefficients in vitro
with both methods.

FRAP experiments are typically performed in tissues in which
macromolecules need to move around cellular obstacles, resulting
in slower fluorescence recovery. To determine how this tortuosity
might affect diffusion coefficients estimated from FRAP experi-
ments, we first simulated FRAP experiments in two- and three-
dimensional geometries introducing radial beads at different
densities to vary the extracellular volume fraction (EVF). Our
simulations showed a strong correlation between tortuosity and
effective diffusivity and agree with previous theoretical work
including Monte-Carlo simulations and homogenisation the-
ory®2=%5, We then tested the predictions from these simulations
with in vitro experiments using polyacrylamide beads to mimic
cells. Compared to experiments without beads, the effective dif-
fusion coefficient decreased by 39% (diffusion hindrance factor 6
=0.61) for 70 kDa fluorescein-dextran and 18% (6 =0.82) for
recombinant GFP. In living zebrafish embryos, effective diffu-
sivity is much further reduced (Fig. 5e). It is unlikely that this is
due to different viscosity of the extracellular medium in vivo,
since free GFP diffusion is only marginally reduced in zebrafish
embryos?2. Instead, it is plausible that the complex geometries of
real extracelluar environments—which include filopodia, extra-
cellular matrix, and cavities that might act as dead end pores—
could further increase tortuosity®2. Finally, most in vivo FRAP
experiments are affected by biochemical reactions such as
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production and degradation of proteins, which must be taken into
account for accurate diffusion coefficient estimates (Fig. 1c, f).
PyFRAP offers various models for different reaction kinetics and
can accurately estimate diffusion coefficients from data sets that
include constant production and degradation.

PyFRAP measures effective diffusion, but due to its built-in
PDE solver it could be extended in the future to consider spatially
inhomogeneous kinetics and advective fluxes and to perhaps even
determine the diffusivities of individual species in polydisperse
mixtures of fluorescent molecules®®®”. While PyFRAP can
simulate three-dimensional FRAP experiments, FRAP data is
currently almost exclusively obtained from two-dimensional
confocal microscopy. In recent years, the development of light-
sheet microscopy made fast three-dimensional imaging with low
phototoxicity feasible®®. In the future, PyFRAP’s image analysis
tools could be extended to fit light-sheet microscopy data, which
might provide deeper insights into the three-dimensional
dynamics of molecule movement including convective flows or
spatially inhomogeneous diffusion.

Methods

FRAP/iFRAP experiments in vitro. FRAP experiments to measure pure diffusion
and tortuosity effects were conducted in a frustum-like plexiglass hole. Holes
around 700 pm in diameter and about 100 um in depth were drilled into a plex-
iglass block using a dental drill. Due to the small depth, the resulting shape was
frustum-like with an upper base of 510 um diameter.

Holes were filled with aqueous solutions of FITC-/fluorescein-labelled dextrans
of different sizes, recombinant GFP, or Dendra2 protein (Supplementary Table 5)
using a micro-pipette. Dendra2 protein was centrifuged at 16,000 x g for 30 min at
4°C to remove protein aggregates. Excess liquid was removed from the hole by
pipetting under observation with a stereo microscope.

To model the effect of tortuosity in the in vitro FRAP experiments,
polyacrylamide beads were added to the sample solution. The microbeads (Bio-Gel
P-2 Gel, <45 um wet bead size) were first soaked in distilled water overnight for
hydration. The beads were then centrifuged at 300 x g, the supernatant removed,
and the required quantity of beads transferred to another tube for resuspension in
fluorescein-dextran or GFP+BSA solution. This was repeated and followed by
removal of the supernatant, leaving a concentrated slurry of beads and fluorescent
solution for the experiments. The beads were transferred into the plexiglass
template and settled within 1-2 min.

To prevent evaporation, mineral oil (Sigma) was placed around the solution
before sealing the hole with a cover slip (No 1.5). Supplementary Fig. 1a outlines
the sample preparation process for in vitro experiments. The sample was upended
carefully and mounted on an inverted confocal microscope. Images were taken
using an LSM 780 NLO microscope (ZEISS) with an LD LCI Plan-Apochromat
25x/0.8 Imm Korr DIC objective (ZEISS) and immersion oil (Immersol TM W, n
=1.334 at 23 °C, ZEISS). First, a plane approximately in the middle of the hole was
chosen and the z-position set to zero. Then, the position of the highest and lowest
point was determined. Cuboid volumes (141.42 um x 141.42 um x 100 um) were
bleached by imaging a z-stack at highest laser power (488 nm) or photoconverted
at moderate laser power. Time series of 300 images (512 pixels x 512 pixels)
were taken with a speed of 1 frame/s (pixel dwell time: 3.15 ps) over a duration of
5 min. The zoom was set to 0.7, and the resulting images had a size of 566.79 um x
566.79 um.

After the FRAP experiment, the template was cleaned using distilled water,
soap, and an interdental toothbrush.

FRAP experiments in vivo. Zebrafish embryos (Danio rerio) were collected 10 min
after mating and proteolytically dechorionated?>2%2, For the experiments with
recombinant GFP, 100 pg of recombinant GFP were injected into the extracelluar
space when zebrafish embryos reached high stage?>>*%° (Supplementary Table 10).
For experiments with secreted GFP?’, 100 pg of the mRNA encoding the fluor-
escent protein were injected at the one-cell stage. For experiments with Squint-
GFP?, either 30 or 200 pg of mRNA were injected at the one-cell stage. At dome
stage, embryos were mounted in drops of 1% low-melting-point agarose animal
pole down onto a glass-bottom dish (MatTek Corp. P35G-1.5-20-C), and as soon
as the drops solidified covered with Danieau’s medium?>*2 to prevent the embryos
from drying out. Supplementary Fig. 1b outlines the in vivo sample preparation
process.

Confocal images were taken roughly at a depth of 40 um from the animal pole
into the embryo. For data sets injected with 200 pg of Squint-GFP-encoding
mRNA, images were acquired with the same settings as described for the in vitro
experiments either with 1 frame/s for 300s, or 1 frame/10's for 3000 s. Images of
embryos injected with 30 pg of Squint-GFP-encoding mRNA were taken with a
spatial resolution of 340.08 um x 340.08 um and 1 frame/10 s for 3000 s. Data sets

10 | (2018)9:1582

for recombinant GFP in vivo were acquired with the same microscope settings as
the experiments conducted in vitro.

ROI selection. PyFRAP’s image analysis depends on defining specific ROIs for the
experimental data and simulations. Users can define multiple different geometrical
shapes of ROIs in three-dimensional space such as cylinders, prisms, and any kind
of addition or subtraction between ROIs. The specified ROIs are then used for
image analysis, estimating concentrations outside the field of view, evaluating the
simulation, and fitting to the analysed data. PyFRAP is equipped with an ROI
manager and wizards for several standard sets of ROIs.

Image analysis. Let Q; (with i € {1, 2, ..., ng} and nq the number of ROIs) be the
list of ROIs specified for PyFRAP’s analysis. The mean intensity over the ROI ), at

time ¢; (with j€ {1, 2, ..., n,} and n, the number of images) is then calculated by
- 1
Io,(5) =+ > Iy t) (1)
1
(k1) €Q;

where A; is the area of Q;, and I(xy, y5, ;) is the intensity at pixel (x, y)) (with k € {1,
2, ..., n} and n, the number of rows in the images, and with /€ {1, 2, ..., n,} and n,
the number of columns in the images).

FRAP image data were analysed within the ROIs Qpjeachea and Qgjice- Qglice Was
defined as a circular domain with centre Cy;c. and radius rg;c.. Since the imaging
depth varied between experiments, both Cgjc. and ry;.. were cropped for each data
set. The bleached ROI Qypjeachea Was defined as a square with sidelength syjeachea and
left-lower corner at Oypjeached = Cslice — %(sbleached, Spleached)- Lhe definition of both
ROIs is shown in Supplementary Fig. 2a.

Accounting for uneven illumination. Uneven imaging due to inhomogeneous
sample illumination is a common problem in microscopy>’~>°. We implemented
two solutions in PyFRAP to address this problem: (1) Normalisation by an image
acquired before bleaching, and (2) applying a flattening mask derived from imaging
a homogeneous fluorescent sample. The pixel-wise mean image over n, images can
be defined as

L

M(x, 31, 4) :%Z (e, 1, ) )

J=1

To avoid noise-induced singularities when normalising, PYFRAP computes a mean
normalisation mask M. over multiple pre-bleach images, and then divides each
image of the recovery time series pixel-wise by the computed mask

I(-xk-,)’l-, t)) + Onorm

I(xe,y1,t) = 3
(07145) = 31 Goe ) O G)

where O,orm is the optimal data offset computed via
Onorm = maX{mki]n(I(xk.,yz., 5)), min (e (i 1, tj))} +1 4

Similarly, the flattening mask F is computed using the mean over multiple images
of a fluorophore spread homogeneously across a cover slip, Mg,

maxg (Mga (%k, 1)) + Ofat
Mot (Xk, 1) + Oftat

Floxiy) = (5)

Similar to the normalisation in Eq. (4), the optimal data offset Oy, is obtained by
taking the maximum over all minimum intensities of images in both recovery and
flattening data sets. The recovery data set is obtained by pixel-wise multiplication
of the recovery image with the flattening mask obtained in Eq. (5):

(i y1,1) = F(xi, 1) - Tk 31, 1) (6)

An outline of both correction methods is shown in Supplementary Fig. 2c.

In the present study, two pre-bleach images were acquired per sample for the
normalisation mask, and two images of fluorescein conjugated to a 40 kDa dextran
or recombinant GFP homogeneously spread on a cover slip were acquired for the
flattening approach. The effects of flattening and normalisation on data analysis are
described in Supplementary Note 1.

Accounting for background fluorescence. Background subtraction is a standard
procedure to extract the true signal of microscope images®®°. Similar to the
flattening and normalisation masks, PyFRAP takes the average over multiple pixels
to obtain a background mask and then subtracts it pixel-wise3$3%;

I(xk, 1, 65) = I (3, y1, 85) — Mikga (X, 1) (7)
The mean of two images without a sample was determined to compute a back-

ground mask. The effect of background subtraction is discussed in Supplementary
Note 1.

| DOI: 10.1038/541467-018-03975-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Application of filters for noise reduction. Microscope data sets are often noisy,
causing problems for normalisation and simulation. PyFRAP smooths noisy pixels
by either applying a Gaussian blur with standard deviation 0,y or 2 median filter
with filter window radius #imedian- We found that o,y = 2 and 7imedian = 5 provided
good results for the data in the present study (see Supplementary Note 1).

Accounting for fluorescence outside of the imaging view. In some cases it is not
possible to capture the whole sample in one field of view under the microscope, and
the concentration in the non-imaged regions needs to be estimated. PyFRAP solves
this by letting users define an ROI Q,;y, to select an approximation of the average
unbleached intensity from the first image of the recovery image series:

1
Gim=7— Y. Ilxyt) (8)

T (k1) €Qim
Qi is defined by Qrim = Qgtice — Qeentrer Where

Qcenter = {(x;ﬁ )/ (k= x>+ — }’C)2<Primrslice} 9)

with (x,, y.) the centre pixel coordinates of the image. Q,;,, thus defines a small
annulus comprising all pixels (x;, y;) inside Qg;ce that have a distance of at least
PrimTslice from the centre of the image (Supplementary Fig. 2b). pim = 0.66 and
Prim = 0.4585 were found to provide good values for the in vitro and in vivo
experiments, respectively.

Simulations. PyFRAP simulates FRAP experiments numerically. Ignoring reaction
kinetics, a FRAP experiment can be described by the diffusion equation
oc(x, t)

P DV2¢(x,t),x € Q (10)

where c(x, ) is the concentration of the measured molecule at position x = (x, y, z)
and time ¢ inside the domain Q, and D is its scalar diffusion coefficient. The
diffusion coefficient is assumed to be constant and homogeneous.

Since the sample is assumed to be a closed system, no-flux Neumann boundary
conditions were defined as

oc(x, t)

=0,x € 0Q (11)
on

where n is the normal vector of the boundary 0Q at position x.

Initial conditions for simulations. The initial conditions are given by the bilinear
interpolation P between pixels of the initial post-bleaching image:

R () ) (2)

P(x,y) =
) (1 =x2) (2 =) \I(xz231)
I(xy, yr) with k', I’ € {1, 2} represents the intensities in the initial image of the four
pixels surrounding (x, y). If (x, y) is outside of the visible ROI in the initial image
(), the rim concentration ¢, given in Eq. (8) is combined piece-wise with Eq.
(12) to give the initial condition

(x,0) P(x,y) if(x,y) € QVz
X, = .
Crim otherwise

(13)

Simulation geometry. PyFRAP comes with its own geometry definition tool.
Geometry definitions can then be converted into the Gmsh format** for meshing.
PyFRAP can read Gmsh’s geometry definition files, use Gmsh’s mesh files, or
import STereoLithography (.stl) files, allowing users to define arbitrary two- and
three-dimensional geometries. This gives users the ability to describe a realistic
FRAP experiment geometry with the necessary precision.

The simulation geometry () for the in vitro experiments was a conical frustum
with upper radius rypper = 317.65 pixels, lower radius riqyer = 224.25 pixels, and
height h = 90.33 pixels (Supplementary Fig. 4b). For the in vivo experiments, the
simulation geometry resembled a zebrafish embryo at dome stage, i.e., the
intersection of two hemispheres intersecting each other at the equator of the outer
hemisphere. Since the geometry depends on the radius of the embryo in the initial
image, 7imaging Was calculated separately for each experiment29'70. Assuming that
the radius of the inner hemisphere 7y, is 10% larger than the one of the outer
hemisphere, 7oy, the geometry can be computed by

2 2
_ Timaging T timaging
Touter = — 5y,
imaging
Tinner = 1.1 Touter <14)
_ 2 _ 2
dcenter - Tinner Touter

where dcenie is the distance between the two centres of the hemispheres.
Supplementary Fig. 4a shows a schematic of the zebrafish dome stage geometry.
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Meshing for simulations. PyFRAP discretises simulation geometries using
Gmsh®® in combination with TetGen*! into tetrahedral meshes. PyFRAP utilises
almost all functionalities of Gmsh—such as boundary layer meshes, attractor
meshes, mesh merging and mesh refinement—allowing users to apply fine meshes
where they are needed.

The overall default element size in the present study was v = 25 pixels®. To
overcome numerical instabilities, such as Gibbs phenomena at the boundary of
Qbleached> the mesh around the bleached area boundary was refined using a
boundary layer mesh of thickness wg; = 30 pixels and element size vy, = 15
pixels®. Since only the simulation inside Qgjce and Qpjeached is used to fit the FRAP
experiments, the mesh inside Qgj;c. was also refined to an element size of vg;c. = 15
pixels®. Supplementary Fig. 4c, e shows an example of a tetrahedral mesh with both
slice refinement and boundary layer meshes for the zebrafish dome geometry
described in the previous section.

PDE solver. All partial differential equations (PDEs) were simulated using the FiPy
toolbox>2. The LU factorisation algorithm or the Preconditioned-Conjugated-
Gradient algorithm implemented in PySparse were used to solve the linear system
at each time step.

Simulation parameters. All simulations were performed with a reference diffusion
coefficient of D = 50 pixels?/s. To ensure that the simulations run long enough to
capture the full recovery of the FRAP experiment, the end time point of the
simulation was set to tm ena = 1680 s for experiments conducted with an acqui-
sition interval of At =1s. Since the recovery is steepest at the beginning of the
simulations, a logarithmic time-stepping scheme was used, making early time steps
shorter to achieve greater accuracy. A summary of all simulation parameters used
to analyse the FRAP data in the present study is given in Supplementary Table 11.

Fitting. To avoid the need to re-simulate the FRAP experiment for each choice of
diffusion coefficient D, PyFRAP uses the self-similarity property of the solution to
Eq. (10). For example, a simulated FRAP experiment with the diffusion coefficient
D = 50 pixels?/s results in the same recovery behaviour as an experiment with the
diffusion coefficient D = 200 pixels?/s, just four times slower. This can be described
as

D,
C(X-, t«, D) = C(Xv [r)Ef t7 Dref) (15)

where D, is the reference diffusion coefficient, i.e., the diffusion coefficient used
for the simulation of Eq. (10). Supplementary Fig. 4d shows simulated recovery
curves for various diffusion coefficients illustrating this self-similarity property.

PyFRAP allows users to fit four different models to FRAP data: (1) Pure
diffusion, (2) diffusion and production, (3) diffusion and degradation, (4) diffusion
with degradation and production, and each of these models with an additional set
of equalisation parameters (see below). In case of pure diffusion, the solution for
the diffusion coefficient D over a given ROI (), is simply given by the volume
integral of the solution in Eq. (15):

c(Qy,t,D) = c(x,t,D)dV (16)

x€Q;

A summary of all parameters used to fit the FRAP data in the present study is given
in Supplementary Table 12.

Extending the diffusion model with reaction kinetics. Spatially uniform pro-
duction was added to the scaled FRAP model defined in Eq. (15) or in Eq. (20) by

&(Qiy t, D) = c(Qi, t, D) + kat (17)

where k; is the production rate. To add spatially uniform degradation, the resulting
solution is given by

¢(Qy,t,D) = ¢(Q;, t,D)e 1! (18)

The parameter k; represents the degradation rate constant. Adding both degra-
dation and production to the system results in the following superposition of
solutions:

k

t(Qi,t,D) = c(Q, t,D)e ™™ + (14 e7h) . (19)

1

Accounting for varying fluorophore fractions by equalisation. FRAP
experiments can vary in intensity during the experiment due to, for example, an
increase or decrease in extracellular volume fraction, due to molecules moving in
and out of the imaging plane, or due to an immobile fraction of fluorescent
molecules. These effects are accounted for by equalisation, which normalises both
simulation and data recovery curves to an equivalent scale between 0 and 1. During
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the fitting process, the simulated recovery curves are slightly lifted or lowered to
better resemble overall fluorescence levels. This can be written as

{Qut.D) = / €(x,1,D)dV — Cuin) (20)

Cmax Li
xeQ;

where E; is the equalisation factor for ROI ;. The background Cmin was chosen to
be the smallest concentration of the bleached ROI inside the imaging region
(Qpjeached) over the whole time series

Cmin = mtin o(x,t)dV

(21)

XEQleached

and the normalisation value ¢y, to be the maximum concentration inside the
whole imaging ROI (Qgjice), over the whole time series

Zmax=mtax / o(x,t)dV

XEQyice

(22)

Minimisation and parameter estimation. Choosing one of the models defined in
Egs. (15), (16), (17), (18) and (19), the sum of squared differences, SSD, was
calculated by

SSD = Z Z(G(Qi,tj,D) — g, (tj))z (23)
R

where t; €0, .., T are all time points of the FRAP data set, and Q; € Qpjeacheds Qstice
are the two ROIs of interest yielding a mean optimal fit between all fitted ROIs. The
minimisation of Eq. (23) was carried out using a constrained Nelder-Mead algo-
rithm®, Since especially for a larger number of degrees of freedom the mini-
misation algorithm tended to stop in local minima, initial guesses for the diffusion
coefficient D were tested over two orders of magnitude, and the fit yielding the
minimum SSD was considered optimal.

Analysis speed. Details of the method to determine PyFRAP’s performance in
terms of analysis speed are described in Supplementary Note 4 and Supplementary
Tables 13 and 14.

Statistics. PyFRAP offers four statistical tools (Supplementary Table 2) allowing
users to test whether the estimated diffusion coefficient for one experimental group
is significantly different from another one. The statistical tools include the two
most prominent parametric significance tests, the Student’s ¢-test>® and a mod-
ification of this test, Welch’s t-test”!, which both assume normally distributed test
groups. PyFRAP also provides the Shapiro-Wilk test, allowing PyFRAP users to
quickly assess whether the estimated diffusion coefficients follow a normal dis-
tribution. The Shapiro-Wilk test was recenﬂg found to have the best sensitivity
compared to other common normality tests’2. If normality cannot be guaranteed,
PyFRAP offers two non-parametric ranked hypothesis tests: The Wilcoxon signed-
rank test’> and the Mann-Whitney U test®’.

Often, the underlying reaction kinetics of FRAP experiments or the relevance of
their contribution might be unknown>*. However, models with more parameters
generally provide better fits than simpler models. The AIC® allows users to
evaluate which model fits the data the best while keeping model complexity low.
For this, let

0 := (ki,ky,D,Ey, Ey, ...) (24)
be the vector of unknown diffusion coefficient D, reaction rates k; and k», and E,
E,, ... a list of equalisation factors. Moreover, let m = m(®) be the model
prediction using ©. Assuming that the data is distributed normally around the
model

di —m; ~ N(u,0) (25)
the log-likelihood function at data point i, L; becomes
Li(®]d; — m;) = (d; — m;)* (26)

and is thus identical with the sum of squared differences used for optimisation in
Eq. (23):

L(©) = Z Li(®) = SSD (27)

The AIC is then given by

AIC = 2k — 2L(0) (28)

12 | (2018)9:1582

where k is the number of parameters of model m and

© = argmin(L(O|d; — my, i = 1...n)) (29)
is the parameter configuration ® minimising the log-likelihood function (Eq. (27)),
i.e., the parameter configuration returned from fitting the model to data. The best
model according to the AIC is then m(argmin(AIC; — AIC,,,)). If the number of
sample points is small, the corrected AIC (AICc) provides a more accurate model
selection technique:

2k(k +1)

AICc = AIC
¢ +nfkfl

(30)
where 7 is the number of data points. A rule of thumb for when the AIC (Eq. (28))
or its corrected version (Eq. (30)) should be used is
n
—>40 31
PyFRAP automatically selects which statistical model is more appropriate if not
specified differently.
PyFRAP also provides R?-values for each fit: An R?-value for each fitted ROI

and the product and mean of these values. In general, PyFRAP computes an R>-
value of an ROI by

Zmi*di
R=1-— 2
a3 (32)

where m; and d; are model and data at time 4, and d is the mean over all data points.

Data exclusion. We performed a rigorous screen of all data sets, and we excluded
data sets that showed strong radial inhomogeneities in the first post-bleach image
due to inhomogeneous distribution of fluorescent molecules. Moreover, we
excluded in vitro data sets that showed unstable distributions in the overall
fluorescence intensity levels, indicating incomplete bleaching through the depth of
the sample.

Code availability. PyFRAP is freely available from https://mueller-lab.github.io/
PyFRAP.

Data availability. All data is available from the corresponding author upon
request.
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